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Modeling a single crystal of cuprate high-Tc superconductor, such as Bi2Sr2CaCu2O8+�, as a stack of
intrinsic Josephson junctions, we formulate explicitly the cavity phenomenon of plasma oscillations and elec-
tromagnetic �EM� waves in mesas of cylindrical and annular shapes. The phase differences of the junctions are
governed by the inductively coupled sine-Gordon equations, with the Neumann-type boundary condition for
sample thickness much smaller than the EM wavelength, which renders the superconductor single crystal a
cavity. Biasing a dc voltage in the c direction, a state with �� kinks in the superconductivity phase difference
piled up alternatively along the c axis is stabilized. The �� phase kinks provide interlock between supercon-
ductivity phases in adjacent junctions, taking the advantage of huge inductive couplings inherent in the cuprate
superconductors, which establishes the coherence across the whole system of more than �600 junctions. They
also permit a strong coupling between the lateral cavity mode of the transverse Josephson plasma and the
c-axis bias, and enhance the plasma oscillation significantly at the cavity modes which radiates EM waves in
the terahertz band when the lateral size of mesa is set to tens of micrometers. It is discussed that the cavity
mode realized in a very recent experiment using a cylindrical mesa can be explained by the present theory. In
order to overcome the heating effect, we propose to use annular geometry. The dependence of frequency on the
radius ratio is analyzed, which reveals that the shape tailor is quite promising for improving the present
technique of terahertz excitation. The annular geometry may be developed as a waveguide resonator, mimick-
ing the fiber lasers for visible lights.
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I. INTRODUCTION

The Josephson effect provides a unique principle to excite
high-frequency electromagnetic �EM� waves.1,2 Much effort
has been made to stimulate powerful radiations, first using
artificial Josephson junction arrays3–11 and later on Joseph-
son junctions inherent in cuprate high-Tc superconductors of
layered structures.12–26 The latter have obvious advantages
since the junctions are homogeneous at the atomic scale
guaranteed by the high quality of single crystals, and the
superconductivity gap is large, typically of tens of meV,
which in principle permits the frequency to cover the whole
range of the terahertz �THz� band, a very useful regime of
EM waves still lacking of compact solid-state generators.27,28

An experimental breakthrough was achieved in 2007.29

Clear evidences have been obtained that coherent terahertz
radiations from side edges of a thin rectangular mesa were
realized by biasing a dc voltage in the c axis of the
Bi2Sr2CaCu2O8+� �BSCCO� single crystal; the frequency of
the EM wave and the voltage where the radiation occurs
obey the ac Josephson relation, and the frequency coincides
with one of the cavity modes determined by the lateral size
of mesa.29

This discovery is expected to leave significant and long-
standing impacts. It has the potential to open a practical way
to develop a source of frequency tunable EM waves based on
superconductivity and fill the so-called THz gap. It also
shines light on new directions of making use of the phase of
superconductivity. Its importance would be better appreci-
ated if one notices that up to now the usage of superconduc-
tivity phase variable is still limited to the superconducting
quantum interference device.

The discovery immediately raises many interesting ques-
tions, such as why the Josephson plasma oscillation, namely,
the coherent tunneling of Cooper pairs back and forth be-
tween adjacent CuO layers driven by a c-axis voltage, can
radiate strong transverse radiations in absence of Josephson
vortices induced by an applied magnetic field, how it be-
comes possible to synchronize the superconductivity phase
variables of �600 junctions, and so on. These quests chal-
lenge our knowledge on superconductivity as well as nonlin-
ear phenomena in general.

It is formulated explicitly in Ref. 23 that there is a signifi-
cant mismatch in impedance �Zout� / �Zin���EM /Lz at the edge
of a superconductor mesa when the thickness of the mesa Lz
is small compared with the EM wavelength �EM, which was
known for a single junction as a limiting case.30 This makes
the tangential component of oscillating magnetic field at the
mesa edge extremely small compared with the electric one,
in sharp contrast to the case of EM plane waves. Actually,
this relation is a general property shared by a normal capaci-
tor with small electrode separation. Particularly for thin me-
sas of superconductor, the vanishingly small tangential com-
ponent of magnetic field gives the Neumann-type boundary
condition of superconductivity phase difference across junc-
tions, namely, the spatial derivative of the phase difference
normal to the edge should be zero �in absence of an applied
magnetic field�.

With this Neumann boundary condition, a new dynamic
state of superconductivity phase difference has been found in
a stack of Josephson junctions under a dc voltage bias, which
is characterized by static �� �actually ��2m+1�� with m as
integer� phase kinks piled up alternatively along the c
axis31–33 �see also Ref. 34�. In this � kink state, an interlock
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between superconductivity phases in neighboring junctions
appears, which establishes the coherence across the whole
system of more than �600 junctions. The � phase kink
makes the lateral cavity modes of the transverse Josephson
plasma couple strongly with the c-axis bias, permits large dc
supercurrent flow into the junctions, and generates strong
EM radiations from the sides of mesa.

The � kink state requests strong inductive couplings be-
tween adjacent superconducting layers,31 which is guaran-
teed in the cuprate high-Tc superconductor BSCCO. Another
condition is on the thickness of the superconductor mesa: it
should be much smaller than the EM wavelength on one
hand, which renders the superconductor mesa a cavity, and
on the other hand, it should be thick enough to avoid large
surface effects. The samples of Lz�1 �m adopted in the
experiment29 satisfy these requests well. The � kink state is
stable against other distortions, such as thermal fluctuations,
inhomogeneity of physical parameters, and so on.

This work is motivated by two recent experiments on THz
radiations from thin mesas of BSCCO single crystals. The
first one is a detection of THz radiations from a cylindrical
mesa,35 after the theoretical proposal32 for verification of the
boundary condition taking advantage of the cylindrical ge-
ometry. The second one is an observation on EM standing
waves in a rectangular mesa,36 an approach being able to
provide direct evidence for cavity resonance. The depen-
dence of the radiation frequency on the sample radius and
the distributions of the EM fields and supercurrent revealed
in the present work are expected to be able to give a refer-
ence for coming experiments and will be helpful in clarifying
the mechanism of the THz radiation from intrinsic Josephson
junctions. In addition, we propose to use annular geometry,
which not only reduces the Joule heating and enhances the
leakage of heat but also provides an additional handle for
controlling the radiation frequency, both important from a
technological point of view.

The remaining part of the present paper is organized as
follows. In Sec. II, we discuss the right boundary condition
for thin mesas from a theoretical point of view. Then we
point out that the result of the recent experiment using a
cylindrical mesa is to be understood in accordance with this
boundary condition. In Sec. III, a couple of cavity modes
possibly available in experiments are presented, with the spa-
tial distributions of the � kink in superconductivity phase
difference, supercurrent, as well as the EM standing wave.
Section IV is devoted to discussion on annular geometry,
which reveals its merits over the cylindrical geometry. Fi-
nally summary and perspectives are given in Sec. V.

II. BOUNDARY CONDITION AND CYLINDRICAL MESA

A. Basic equation and general solution

The inductively coupled sine-Gordon equations for the
gauge-invariant phase differences in a stack of Josephson
junctions with a dc bias and dissipations are given in the
dimensionless form as31–33

�Pl = �1 − ���2���sin Pl + 	�tPl + �t
2Pl − Jext� , �1�

with � as the Laplace operator in lateral directions, ��2�Ql
=Ql+1+Ql−1−2Ql as the second difference operator along the

c axis, ���ab
2 /d2�105 as the inductive coupling �d standing

for the period of BSCCO lattice in the c direction�, and 	
�4�
c�c /c	�=0.02 as the c-axis conductivity; the lateral
space is scaled by �c and time by the inverse of intrinsic
plasma frequency �c

	� /c. For more details of definitions see
Refs. 31–33. For a sample of thickness much smaller than
the EM wavelength, the Neumann-type boundary condition
should be taken for the lateral directions �nPl�0.

A same set of Eq. �1� was used for stacks of artificial
Josephson junctions where superconductor layers are of
thickness sufficient for defining a penetration depth. It can
also be derived from the Lawrence-Doniach model for cu-
prate high-Tc superconductors37,38 �see also Ref. 33�. As for
the mesa structure of system used in experiments,29,39 there
is no evidence showing that the substrate of BSCCO single
crystal plays a crucial role in the phase dynamics in the mesa
and the EM radiation. Taking the mesa of large number
��600� of junctions as a bulk system, we neglect the effect
from the substrate.

The experimental observation of the cavity relation of ra-
diation frequency29,39 indicates that standing waves of
plasma oscillation have been built in the cavity formed by
the mesa, which in turn implies that the oscillating part of the
phase difference satisfies the Laplace equation.31–33 The
plasma oscillation should be uniform since the observed ra-
diations are coherent, known as a super-radiation.29 Without
losing generality, the solution to Eq. �1� can be given by

Pl�r,t� = �t + P̃�r,t� + f lP
s�r� , �2�

where the first term accounts for the finite dc bias voltage
and the second for plasma oscillation

P̃�r,t� = Ag�r�sin��t + � �3�

with A as the amplitude, g�r� as an eigenfunction of the
Laplace equation with the Neumann boundary condition, and
the frequency given by the voltage following the ac Joseph-
son relation; the third term carries the interjunction coupling
via the l dependence.

The general form of Eq. �2� describes a wealth of solu-
tions even giving the constraint imposed by available experi-
mental results. However, it is easy to see31–33 that the se-
quences f l= �−1�l or f l= �−1��l/2� with period two or four
layers, respectively, diagonalize Eq. �1� due to the property
of the difference operator ��2�. In simulations, these two
states appear frequently and are stable.31,33 Here we focus the
attention to these two cases.

In an approximation established well for small amplitude
A, the phase shift  is given by

tan  = 	�/��2 − k2� , �4�

where k is the wave number of cavity mode �see below�. The
static phase Ps�r� and amplitude A should satisfy the follow-
ing equations:

�Ps = 1
2Aq� cos g�r�sin Ps, �5�

with the same Neumann boundary condition, where q=4 and
2 for the c-axis sequence of periods 2 and 4, respectively,
and
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A2 =
1

��2 − k2�2 + �	��2
��drg�r�cos Ps

��dr�g�r��2 �2

, �6�

with � as the lateral cross section of mesa.
The nontrivial solution Ps�r� presumes the � phase

kink31–33 �see also Ref. 34�. The static c-axis supercurrent
which contributes to the net current flowing into the system
in the c direction is given by

Js�r� = 1
2A sin g�r�cos�Ps�r�� . �7�

The trivial vacua solution Ps=0 �Refs. 40–42� is dropped
here since the associated solutions are probably unstable near
the cavity voltage.33,43

It is noticed that harmonics should exist in any cavity
phenomena. For sine-Gordon equations, multiples of a cavity
frequency intervene with each other. Equation �3� including
only a single frequency should be understood as an approxi-
mation. The approximation becomes worse close to reso-
nance where the amplitude A is large and thus harmonics
should be taken into account. For the rectangular geometry,
multiples of a resonating cavity frequency correspond to cav-
ity modes of higher wave numbers. Amplitudes for a reso-
nating frequency and its multiples are enhanced in the same
way as indicated in Eq. �6�. The ratio of amplitudes for the
double frequency and the resonating frequency is therefore
of order of 1/2 �see also Ref. 31�. However, for the cylindri-
cal geometry, the frequency double of a resonating cavity
one does not correspond to a cavity mode since the wave
numbers of cavity modes �namely, zeros of derivative of the
Bessel function� are not equally separated. According to Eq.
�6�, the amplitude for the double of the resonating frequency
will not be enhanced. The amplitude ratio should then
roughly be of order of 	. For small conductance such as 	
=0.02 adopted in the present work, typically for high-Tc su-
perconductor BSCCO, the suppression of amplitudes of har-
monics is significant compared with the rectangular geom-
etry.

The oscillating electric and magnetic fields inside the
junctions are given by the plasma oscillation term of the
phase difference in dimensionless forms as

Ez�r,t� =
� P̃

�t
, �8�

with Ex ,Ey �0 to a good approximation in cuprates,31 and

B�r,t� = − � � �P̃�r,t�ẑ� , �9�

with ẑ as the unit vector in the c axis. It is Eq. �9� that
enforces the boundary condition for the phase difference
�nPl=0 with n as the normal of the sample edges.

B. Verification of the boundary condition

In a rectangular mesa, the spatial part of the plasma term
of the lowest cavity mode satisfying the right boundary con-
dition is cos�x� /L�. Unfortunately, cos�x� /L� and sin�x� /L�
are both eigenfunctions of the Laplace equation and give the
same wave number �or equivalently frequency in dimension-
less form� � /L. Therefore, from a pure experimental point of

view, the dependence of frequency on the system size29 can-
not determine uniquely the mode.

Cylindrical geometry was proposed to identify uniquely
the dynamics of the superconductivity phase difference in-
side the junctions.32 For the cylinder geometry, the radial part
of eigenfunction of the Laplace equation is given by the
Bessel function. The boundary condition for the cylinder ge-
ometry determines uniquely the wave number and vice versa
since the zeros of the Bessel functions are different from the
zeros of their derivatives, contrasting to sine and cosine func-
tions in the rectangle geometry. Therefore, measuring by ex-
periments the frequency of EM radiation from a cylindrical
mesa of given radius and assigning the mode by the proper-
ties of Bessel functions enable one to identify uniquely the
right boundary condition for the EM waves. It was addressed
that, from the boundary condition suitable for thin mesas, the
frequency of radiation should be given by the zeros of de-
rivatives of Bessel functions.32 A mode uniform azimuthally
was worked out explicitly, and the frequency is figured out as
k=� /a with the radius a and �=3.8317, the first zero of
derivative of the Bessel function J0�z�.44

A very recent experiment35 showed that the frequency of
EM wave radiated from the cylindrical mesa of radius a
�45 �m is f �0.474 THz. With the light velocity in the
sample c�=c /	��7.16�107 m /s ���17.54 �Ref. 45��, the
wave number observed in the experiment35 is given by k
=� /a with ��1.87, which is close to �=1.8412, the first
zero of derivative of the Bessel function J1�z�. Therefore, the
experiment indicates unambiguously that the frequency of
EM radiation is determined by the zero of derivative of the
Bessel function, in agreement with the theoretical works.23,32

III. MODES FOR CYLINDRICAL MESA

Since the distribution of EM standing wave can be ob-
served directly in experiments36 and serves as a check of
theory, we map it out explicitly for a couple of cavity modes
with lowest frequencies for cylindrical geometry. The distri-
butions of superconductivity phase difference and the super-
current are also presented which are helpful in understanding
the way how large dc powers are converted to high-
frequency transverse radiations.

The spatial part of the plasma term of �m ,n� mode �Eq.
�3�� is given by

gmn
c �r� = Jm�mn

c

a
��cos�m�� �10�

with the cylindrical coordinate r= �� ,��, a as the radius of
the cylinder, and �mn

c as the nth zero of derivative of Bessel
function Jm�z� �see Table I�. The wave number of each cavity
mode is given by kmn

c =�mn
c /a. For a cylinder with uniform

physical properties, the eigenfunction for the azimuthal angle
sin�m�� degenerates with cos�m��, which, and any linear
combination of them, can be absorbed into the latter by re-
defining the azimuthal angle �, and will not be discussed
explicitly.
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A. (1,1) mode

The wave number, or equivalently frequency �k=� in di-
mensionless form and k=� /c� with units�, of the �1,1� mode
for the cylinder k11

c =�11
c /a agrees well with the experiment35

as discussed in Sec. III.
The distribution of the static phase Ps, the supercurrent,

and the spatial part of the oscillating electric and magnetic
fields are displayed in Fig. 1. The � phase kink runs along
the diameter at the direction �= �� /2, and the phase satu-
rates to 0 and � at the left and right parts of the cylinder �Fig.
1�a��.

Associated with the static phase kink, the oscillating mag-
netic field assumes the maximal absolute value along the
diameter at �= �� /2 and decreases to zero at the leftmost
and rightmost parts of the cylinder �Fig. 1�d��. The azimuthal
component of the magnetic field is always zero at the edge of
cylinder, as imposed by the boundary condition. The electric
field takes its maximal absolute value at the leftmost and
rightmost parts, while it is reduced to zero along the diameter
at �= �� /2 �Fig. 1�c��.

Comparing the distributions of the � phase kink and the
electric and magnetic fields, it is found that the �1,1� mode
for the cylinder geometry corresponds to the �1,0� mode for
the rectangle geometry.32

The maximal value of the supercurrent takes place at the
leftmost and rightmost parts of the cylinder for the present
mode. The factor cos�Ps�r�� from the � phase kink �Fig.
1�a�� renders the supercurrent associated with the cavity
mode g�r� positive over the cylinder �Fig. 1�b�� as in Eq. �7�,
which permits large bias current when the plasma amplitude
A is enhanced at the cavity resonance.

B. (2,1) mode

The patterns for the �2,1� mode are displayed in Fig. 2.
There are two pairs of �� kinks in the azimuthal direction
�Fig. 2�a��, which increase the frequency to k21

c =�21
c /a �see

Table I� higher than the �1,1� mode where the � kink running
along a diameter �Fig. 1�a�� equivalent to a pair of �� kinks
in the azimuthal direction.

The magnetic field penetrates into the cylinder along two
directions �Fig. 2�d��, �=3� /4 and �=−� /4, and flows
away along the two orthogonal directions, �=� /4 and �=
−3� /4, where the absolute value of magnetic field assumes
its maximum. The electric field and the supercurrent become
maximal at the directions of multiples of �=�. The �2,1�
mode for the cylinder geometry corresponds to the �1,1�
mode for the rectangle geometry.32

C. (0,1) mode

For comparison, we display in Fig. 3 the patterns for the
�0,1� mode for cylinder geometry which has been discussed
in Ref. 32. Since this mode is uniform azimuthally, the �
phase kink has to be compressed into the radial direction
�Fig. 3�a��. This makes the spatial variation in the magnetic
field steep �Fig. 3�d��, and thus the wave number increases to
k01

c =�01
c /a �see Table I�, which is to be excited at a voltage

higher than the above �1,1� and �2,1� modes. The magnetic
field is circular in this mode �Fig. 3�d��, and in order to
match the boundary condition at the edge it is suppressed to
zero totally. The magnetic field is also suppressed to zero at
the center.

TABLE I. Position �mn
c of the nth zero of the derivative of the

Bessel function Jm�z�. Factors jmn
c , smn

c , and emn
c are defined in Eqs.

�11�–�13�.

�m ,n� �1,1� �2,1� �0,1� �1,2�

�mn
c 1.8412 3.0542 3.8317 5.3314

jmn
c 0.3792 0.3452 0.3566 0.3135

smn
c 1.076 1.209 0.3566 1.181

emn
c 3.380 3.797 2.241 3.710

(b)(a)

(c) (d)

FIG. 1. �Color online� Spatial distribution of �a� the static phase
term Ps, �b� the supercurrent, and the standing �c� electric and �d�
magnetic waves for the �1,1� mode of a cylindrical mesa. Here
Aq� cos =5000 is taken for Eq. �5� in �a� and the kink is approxi-
mated as a step function in �b�. The lateral coordinates are normal-
ized by the radius of the cylinder. The quantities except the phase
difference Ps are up to the plasma amplitude A.

(b)(a)

(c) (d)

FIG. 2. �Color online� Same as Fig. 1 for the �2,1� mode of a
cylindrical mesa.
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D. (1,2) mode

The � phase kink can occur simultaneously in both azi-
muthal and radial directions. The lowest mode of this type is
the �1,2� mode �see Table I� shown in Fig. 4.

E. IV characteristics

The IV characteristics is linear away from the cavity volt-
age and is given approximately by31–34

Jext = 	�
1 +
jmn

��2 − ��mn/a�2�2 + �	��2� �11�

for voltage close to a cavity mode with the factor jmn sum-
marized in Table I for the four lowest cavity modes for cy-
lindrical geometry. It is noticed that the factor jmn does not
depend on the radius. In the present approximation, the
maximal current at the cavity resonance is 	�mn /a
+ jmn / �	�mn /a� in units of Jc, and the Q factor is �mn / �a	�
with a prefactor of order of unity. Since the present approxi-
mation fails when A becomes large, the estimate on the
maximal current should be interpreted as an upper bound. A

treatment with improvement on the peak value of current at
the resonance is available for the present cylindrical geom-
etry similar to the rectangular case.32 In Fig. 5, we display
the IV characteristics for a cylinder of radius a=0.4.

F. Radiation from cylindrical mesa

The Poynting vector at the perimeter of the cylinder is
given by

s =
smn cos2�m��/�Z�

��2 − ��mn/a�2�2 + �	��2 , �12�

with Z as the effective surface impedance, and the total en-
ergy radiation per unit length in the c axis is given by

e =
emna/�Z�

��2 − ��mn/a�2�2 + �	��2 , �13�

with the factors smn and emn summarized in Table I for the
first four cavity modes in the cylindrical geometry.

The radiation pattern of each mode can be computed by
using the Huygens principle,33,46 and the result is displayed
in Fig. 6.

IV. ANNULAR MESA

A hurdle for the present technique to excite EM waves of
high frequency is the heating effect since the corresponding
high dc voltage injects large currents into the sample result-
ing in severe Joule heating. One way to overcome this effect
may be to dig a hole in the superconductor mesa, rendering,
for example, a cylindrical one to annular, which reduces the
cross section, and thus the total current and Joule heating.
Additionally the inner surface of an annular mesa may help
leaking heat generated in the mesa. Tailoring the shape of
superconductor mesa however will affect the cavity mode
and thus the radiation frequency in a nontrivial way. In order

(b)(a)

(c) (d)

FIG. 3. �Color online� Same as Fig. 1 for the �0,1� mode of a
cylindrical mesa.

(b)(a)

(c) (d)

FIG. 4. �Color online� Same as Fig. 1 for the �1,2� mode of a
cylindrical mesa.

0

0.1

0.2

0.3

0.4

0.5

3 6 9 12 15

c(1,1)
c(2,1)
c(0,1)
c(1,2)

J e
xt

�

FIG. 5. �Color online� IV characteristics for the cylindrical mesa
including the four lowest modes. The dimensionless voltage, or
equivalently the wave number and frequency, is given by �=�c /a
with �c=1.8412, 3.0542, 3.8317, and 5.3314 for the �1,1�, �2,1�,
�0,1�, and �1,2� modes, respectively. The radius of cylinder is a
=0.4 �a=0.4�c�.
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to check this effect, we need to understand the cavity phe-
nomenon for the annular geometry.

For the annular geometry, the spatial part of the plasma
term of �m ,n� mode is given by

gmn
a �r� = �Jm�mn

a

ao
�� + pNm�mn

a

ao
���cos�m�� , �14�

where Nm�z� is the Bessel function of second kind and ao is
the outer radius. The Neumann boundary condition should be
satisfied at both the outer and inner surfaces. This determines
the coefficient �mn

a ,

Jm� �mn
a ai

ao
�Nm� ��mn

a � − Jm� ��mn
a �Nm� �mn

a ai

ao
� = 0, �15�

as a function of the ratio ai /ao between the inner and outer
radius, where Jm� �z� and Nm� �z� are the first derivatives �see
Table II�. The wave number, or equivalently the frequency, is
given by kmn

a =�mn
a /ao. The coefficient p in Eq. �14� is then

determined by

p = − Jm� ��mn
a �/Nm� ��mn

a � . �16�

A. (1,1) mode

The distributions of the static phase kink, the supercur-
rent, and the spatial part of the oscillating electric and mag-
netic fields for �1,1� mode are displayed in Fig. 7 for the case
of ai /ao=1 /2. There are two features concerning the redis-
tribution of magnetic field, comparing Figs. 1�d� and 7�d�.
First, the maximum of magnetic field at the cylinder center is
suppressed. Second, the magnetic field becomes along the
radial direction in most part of the mesa when the center of
mesa is removed since the magnetic field should be normal
to both outer and inner surfaces. Both of these two factors
suppress the strength of magnetic field and thus reduce the
frequency.

B. (2,1) mode

The patterns for the �2,1� mode are displayed in Fig. 8,
which is to be compared with Fig. 2. Similar to �1,1� mode,
the magnetic field becomes along the radial direction in most
part of the mesa.

C. (0,1) mode

The patterns for the �0,1� mode are displayed in Fig. 9. In
contrast to the modes �1,1� and �2,1�, the magnetic field is
circular in the �0,1� mode. The system arranges the magnetic
field to zero totally at the two surfaces in order to satisfy the

TABLE II. The nth solution �mn
a of Eq. �15� associated with the

Bessel function Jm and Nm for annular sample with ai /ao=1 /2. The
factor jmn

a is defined in Eq. �11�, smn
a,i and smn

a,o are defined in Eq. �12�,
and emn

a,i and emn
a,o are defined in Eq. �13� for inner and outer perim-

eters, respectively.

�m ,n� �1,1� �2,1� �0,1� �1,2�

�mn
a 1.3546 2.6812 6.3932 6.5649

jmn
a 0.4052 0.4034 0.3964 0.3206

smn
a,i 0.7582 0.6160 1.133 1.846

smn
a,o 0.8441 0.9385 0.5805 0.9208

emn
a,i 2.382 1.935 7.117 5.798

emn
a,o 2.652 2.948 3.647 2.893

yy

xx

zz

y

x

z

y

x

z

y

x

z

(b)(a)

(c) (d)

FIG. 6. �Color online� Radiation patterns for �a� �1,1� mode, �b�
�2,1� mode, �c� �0,1� mode, and �d� �1,2� mode of cylindrical mesa
at the respective resonance frequency. The radius of the mesa is a
=0.4.
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(c) (d)

FIG. 7. �Color online� Same as Fig. 1 for the �1,1� mode of an
annular mesa except that the lateral coordinates are normalized by
the outer radius and the ratio between the inner and outer radii is
1/2.
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Newmann boundary condition. Thus, the density of magnetic
flux increases when the center of cylinder is removed, which
results in a higher frequency.

D. (1,2) mode

The patterns for the �1,2� mode are displayed in Fig. 10.
There are two features in the redistribution of magnetic field
for this mode as displayed in Fig. 10�d�. The maximum of
magnetic field at the center of the cylindrical mesa disap-
pears �Fig. 4�d��, similar to �1,1� mode. On the other hand,
the density of magnetic flux increases at the other two
maxima of magnetic field, similar to �0,1� mode.

E. Dependence of frequency on aspect ratio

The dependence of wave number, or equivalently fre-
quency, on the aspect ratio ai /ao is shown in Fig. 11. For the
�1,1� and �2,1� modes, the wave number ka=�a /ao decreases
with increasing ratio ai /ao, whereas an opposite trend is seen
for the �0,1� mode. The behavior of the �1,2� mode is a
compromise of the both trends, yielding a minimum in wave

number at ai /ao�0.2. These behaviors are well understood
from the redistribution of magnetic field in the corresponding
cavity modes discussed above.

For the �1,2� mode, the regime 0�ai /ao�0.4 can be used
to suppress the Joule heating without changing much the
radiation frequency. Since the curves for the �1,1� and �2,1�
modes in Fig. 11 are quite flat, they can also be useful for the
same purpose. The mode �0,1� and the mode �1,2� with
ai /ao�0.4 can be used to increase the radiation frequency
provided the heating effect can be controlled.

F. IV characteristics

The IV characteristics for the annular mesa is also given
by Eq. �11�, with the factor jmn summarized in Table II for
the annular mesa with ai /ao=1 /2 and displayed in Fig. 12.

G. Radiation from annular mesa

The Poynting vectors at the inner and outer perimeters of
the annular sample are given by Eq. �12�, with a standing for

(b)(a)

(c) (d)

FIG. 8. �Color online� Same as Fig. 7 for the �2,1� mode of an
annular mesa.

(b)(a)

(c) (d)

FIG. 9. �Color online� Same as Fig. 7 for the �0,1� mode of an
annular mesa.

(b)(a)

(c) (d)

FIG. 10. �Color online� Same as Fig. 7 for the �1,2� mode of an
annular mesa.
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FIG. 11. �Color online� �a as a function of the radius ratio ai /ao

for the lowest four modes for the annular geometry.
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the outer radius. The factors smn
a,i and smn

a,o are summarized in
Table II for ai /ao=1 /2. The total energy radiations at the
inner and outer perimeters per unit length in the c axis are
given by Eq. �13�, with a in the numerator for the inner and
outer radii, respectively, while that in denominator for the
outer radius. The factors emn

a,i and emn
a,o are summarized in

Table II for ai /ao=1 /2. The radiation power depends on the
aspect ratio ai /ao, which can be used to optimize the sample
shape.

The radiation pattern of each mode is displayed in Fig. 13
for the annular geometry, where multireflections at the inner
radius have been neglected since the mesa thickness is very
small compared with the EM wavelength.

V. SUMMARY AND PERSPECTIVES

We first address that the radius dependence of radiation
frequency observed in a recent experiment using a cylindri-
cal mesa35 is to be understood as a clear indication of the
Neumann-type boundary condition for mesa of small thick-
ness compared with the EM wavelength, which the � kink
state has been derived uniquely for inductively coupled Jo-
sephson junctions. Detailed spatial distributions of the super-
conductivity phase difference with a � phase kink are pre-
sented for various cavity modes of cylindrical mesa. Along
with them, we also summarize the spatial distribution of the
EM standing waves inside the junctions which hopefully can
be observed in experiments.

We propose to use annular geometry to excite THz EM
radiations. The obvious advantage of the annular geometry is
the reduction in heating since the area of sample is reduced

which suppresses the total Joule heating and the inner sur-
face of the sample may enhance heat leakage additionally.
The effect of removing the central part of a cylindrical mesa,
thus rendering an annular one, on the redistribution of the
superconductivity phase difference, the supercurrent, and the
EM waves is analyzed. It is shown that the radiation fre-
quency varies with the aspect ratio in different ways for dif-
ferent modes, and there is plenty of room for modification of
the EM radiation by tailoring the shape of sample while
keeping low heating.

Single crystal of superconductor manufactured in annular
geometry can also work as a waveguide resonator �see, for
example, Ref. 47�. In contrast with the fiber lasers developed
for visible lights, the lasing mode propagates along the an-
nular superconductor. When the outer surface is shielded by
wrapping a jacket made of appropriate materials, new kink
state of superconductivity phase can be realized which en-
hances the electromagnetic wave propagating in the wave-
guide.
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FIG. 13. �Color online� Same as Fig. 6 for annular mesa. Mul-
tireflections due to the inner surface are neglected since the thick-
ness of annular mesa is very small compared with the EM wave-
length. The radii are ai=0.2 and ao=0.4.
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